RAMOCCOMMUNITY RAMOCCOMMUNITY RAMOCCOMMUNITY powered by cm87 (RAMTASTiXX)

RAM OC Anleitung Vers. 1.1 Last Update 15.01.2019

INHALTSVERZEICHNIS

Vorwort 2
Welche Programme werden gebraucht?
Kurze Infos zu den einzelnen Programmen 4
Thaiphoon Burner
Ryzen Timing Checker
Ryzen DRAM Calculator
Aida649
Karhu RAM Test
TestMem5
Let's Talk DRAM
RAM OC Anleitung - Anfänger
ProcODT/Rtt/CAD – Stabilität für Boot/Karhu/TM5
Fehleranalyse Karhu
Wo kann ich meine Subtimings noch verbessern? Oder sind meine Subtimings zu straff?
Wie warm darf mein RAM Kit werden? Wie viel Spannung (VDIMM) ist sinnvoll?
Eignen sich auch Spiele für Stabilitätstests?
Nützliche Links
Danksagung

VORWORT

Für das Vorhaben wird keine Haftung bzw. Garantie übernommen. Für jegliche Schäden an irgendwelchen Komponenten ist der Durchführer selbst verantwortlich.

Hier findest du den dazugehörigen Thread auf Computbase.de:

https://www.computerbase.de/forum/threads/amd-ryzen-ram-oc-community.1829356/

WELCHE PROGRAMME WERDEN GEBRAUCHT?

Thaiphoon Burner (noch Vers. 14xx, da Version 1500 "Show delays in nanoseconds" nicht korrekt ausliest)

Ryzen Timing Checker

Ryzen Dram Calculator

AIDA64 (auch die Free Version ist für das Vorhaben ausreichend)

Karhu RAM Test (Einmalige Kosten in der Höhe von ca. EUR 10,--, aber mit Abstand das beste Programm)

TestMem5 by 1usmus (@nospherato Danke für den Link)

Kostenlose Alternative zu Karhu \rightarrow <u>HCI Memtest</u>

[Übersicht] Speichertestprogramme 2018

KURZE INFOS ZU DEN EINZELNEN PROGRAMMEN

IM NÄCHSTEN ABSCHNITT WERDEN KURZ DIE EINZELNEN PROGRAMME ERKLÄRT – RESTLICHE INFORMATIONEN FOLGEN IN DER ANLEITUNG.

THAIPHOON BURNER

Nachdem die Programme vom Netz geladen wurden, öffnet mal Thaiphoon Burner als Administrator. Vorgehenweise: "Read - Read SPD"

Was kann ich nun aus dieser Übersicht erkennen?

Die wichtigsten Punkte für den Anfang findet ihr in der rechten Spalte (DRAM COMPONENTS).

Unter Manufacturer seht ihr den Hersteller (in meinem Fall: Samsung)

Unter DIE DENSITY/COUNT seht ihr zb.: B-die, damit erkennt man, welcher IC verbaut ist. In meinem Fall <u>Samsung B-die</u>.

MEMORY MODULE	DRAM COMPONENTS
MANUFACTURER	MANUFACTURER
Kingston	Samsung
SERIES	PART NUMBER
Not determined	K4A8G085WB-BCRC
PART NUMBER	PACKAGE
KHX4000C19D4/8GX	Standard Monolithic 78-ball FBGA
SERIAL NUMBER	DIE DENSITY / COUNT
A30CD6AAh	8 Gb B-die (20 nm) / 1 die
JEDEC DIMM LABEL	COMPOSITION
8GB 1Rx8 PC4-2400T-UA2-11	1024M x8 (64M x8 x 16 banks)
ARCHITECTURE	CLOCK FREQUENCY
DDR4 SDRAM UDIMM	1200 MHz (0,833 ns)
SPEED GRADE	MINIMUM TIMING DELAYS
DDR4-2400T downbin	17-17-17-39-55
CAPACITY	READ LATENCIES SUPPORTED
8 GB (8 components)	18T, 17T, 16T, 15T, 14T, 13T, 12T
ORGANIZATION	SUPPLY VOLTAGE
1024M x64 (1 rank)	1,20 V
REGISTER MODEL	XMP CERTIFIED
N/A	2000 MHz / 19-21-21-42-94 / 1,35 V
MANUFACTURING DATE	XMP EXTREME
Week 31, 2018	1802 MHz / 17-18-18-39-85 / 1,35 V
MANUFACTURING LOCATION	SPD REVISION
Keelung, Taiwan	1.1 / September 2015
REVISION / RAW CARD	XMP REVISION
0000h / A2 (8 layers)	2.0 / December 2013

Danach klickt auf "Report" - "Show delays in nanoseconds" - "File - Export to - Complete HTML Report" und speichert es auf eurer Platte.

[Siehe Bilder]

🕜 Thaipho	on Burner / KHX400	0C19D4/8GX													-	×
File Edit I	EEPROM SMBus	Tools View	Backup	-												
13	Constant Deserve	0		e. e.			13		a.							
2.5	Upen Dump				0		0			2						
Create	Save Dump	Protect	Read	Report XME	F I	Editor	Du	mp	Brows	er Com	are A					
			11	icepore in a			,			,						
								PART	IUMBER	DETAILS						^
				JEDEC DIM	M Labe	l:		8	GB 1Rx	3 PC4-240	OT-UA2	2-11				
				FREQUENCY	CAS	RCD	RP	RAS	RC	RRDS RR	DL WR	WT	रs wti	RL FAW		
				1200 MHz	18	17	17	39	55	4 6	18	3	9	26		
				1200 MHz	17	17	17	39	55		18			26		
				1067 MHz	16			35	49		16			23		
				1067 MHz	15	15	15	35	49	4 6	16	3	8	23		
				933 MHz	14	13	13	30	43	4 5	14	3	7	20		
				933 MHZ	13	13	13	30	43	4 5	14			20		
				800 MHZ	12	11	11	20	37	3 4	12	2	0	17		
				667 MHz	10	10	10	20	31	3 4	10		5	14		
				007 1112			TATEL	EVTOR	ME MEM		11.55					
				Profiles Pe	vicion	2.0	INTEL	EXTRE	PIE PIEPI	ORY PROP	ILES					
				Profile 1 ((°ertifier	2.0 I) Enabl	es. Ye	5								
				Profile 2 (F	xtreme) Fnabl	es: Ye	5								
				Profile 1 C	hannel	Confia:	2 DIM	- M/chan	inel							
				Profile 2 C	hannel	Config:	2 DIM	M/chan	inel							
				XMP PARA	METER					PROFILE	1	PR	OFILE 2	1		
				Speed Gra	de:					DDR4-	4000	DI	DR4-36	i04		
				DRAM Cloc	k Frequ	iency:				2000 N	1Hz	18	302 MH			
				Module VD	D Volta	ge Leve	d:			1,35 V			35 V			
				Minimum [RAM C	ycle Tin	ne (tCl	():		0,500	ns		555 ns			
										21T,20	T,19T,	18T, 18	3T,17T	,16T,15T,		
				CAS Laten	cies Su	pportea				1/1,10 13T 12	T 11T	141, 14 10T 10	1,131. T	,121,111,		
				CAS Laten	cv Time	(tAA):				19T	.,,	17	/π			
				RAS# to C	AS# De	lay Tim	ie (tRC	D):		21T		18	ЗТ			
				Row Prech	arge De	elay Tim	ne (tRF):		21T		18	зт			
				Active to P	recharg	e Delay	Time	(tRAS)		42T		39	т			
				Active to A	ctive/R	efresh C	Delay T	'ime (ti	RC):	94T		85	σT			
				Four Activa	ate Win	dow De	lay Tin	ne (tFA	.w):			36	σT			
				Short Activ	ate to /	Activate	Delay	Time (tRRD_S): 9T		71				
				Long Activ	ate to A	ctivate	Delay T	Fime (t	tRRD_L)	: 10T		91				
				Normal Re	tresh R	ecovery	Delay	Time ((tRFC1):	700T		63	31T			
				2x mode R	erresn	Recover	ry Dela	y i ime	(TRFC2): 5201		40	991 00T			
				4X mode R	erresit	Recover	y Deld	y mile	r (uxrC4). 3201	Show	, delave	in nar	nseconds		
											SHOW	aciays		loseconus		\sim
Part Numbe	er		O. Searc	h 🔲 Open wł	ien four	ıd										
DIRDIN OF	100h 11	inh for	roonshot													
UDBIE - BI	1000 - 11	SCP	reenshot												 	
SMBus 0 EEPRO	UM 52h SMBC 790B	:1002 SMBCloc	ck 95 kHz													//,

8	Fhaiphoon Burner / KHX400	00C19D4/8GX														-	×
File	Edit EEPROM SMBus	Tools View	Backup	Help													
	New	- 1		ر د	2			90			-	6					
	Open	F2			5						2						
	Open SPD shortcuts		Read	Report	XMPE	Edi	tor D	ump	Brows	ser	Compare	AMD	DCT				
	Import from Clipboard	Ctrl+Ins			- on consu		0 0011 10	PADT	NUMBER	DET	ATLS	_	_	_			
	Update Dump with			JED	EC DIMM	Label:		PART	8GB 1R)	x8 P(C4-2400T	-UA2-1	1				
	Save Dump	Ctrl+S		FRE	QUENCY	CAS I	RCD RP	RAS	RC	RR	DS RRDL	WR	WTR	WTRL	FAW		
	Save Dump As			120	0 MHz	18	17 17	39	55			18			26		
	Export to	>	Plain T	evt Report	0.001-	17	17 17	39	55	4	6	18	3	9	26		
	Take a screenshot	Shift+S	Micros	oft Excel Re	nort		15 15	35	49	4	6	16		8	23		
	Take a screenshot	Sillers	LITAL	Dement .	pon		13 13	30	49	4	5	14		0 7	20		
	Exit	Ctrl+X	Gammel	Report)	- 1	13 13	30	43	4	5	14	3		20		
			Compi	lete H I IVIL N	сероп		11 11	26	37			12			17		
			Clipbo	ard			11 11	26				12			17		
				667	MHz	10	10 10	22	31	3	4	10	2	5	14		
							INT	EL EXTR	EME MEI	MOR	Y PROFILE	s					
				Pro	files Revis	ion: 2.0											
				Pro	file 1 (Cer	tified) E	inables: \	/es									
				Pro	file 2 (Extr	reme) E	nables: Y	'es									
				Pro	file 1 Chai	nnel Co	nfig: 2 DI	MM/cha	innel								
				Pro	file 2 Char	nnel Co	nfig: 2 DI	MM/cha	innel	_							
				XM	P PARAME	TER				P	ROFILE 1	~	PROF	ILE 2			
				Spe	ed Grade	:				l		0	100	4-360	ŧ		
				DKA Mov		-requent	icy:			4	2000 MHZ		1 20				
				Min	imum DRA		e Time (t	CK).			1,33 V 1 500 ns		0.5	5 ns			
						un cyci	e rine (e	city.		2	21T,20T,1	9T,18	г, 18Т	,17T,1	6T,15T,		
				CAS	5 Latencie	s Suppo	orted:			1	17T,16T,1 13T.12T.1	5T,14 1T.10	Г, 14Т Г 10Т	,13T,1	2T,11T,		
				CAS	5 Latency	Time (t	AA):				9,500 ns		9,4	33 ns			
				RAS	5# to CAS	# Delay	Time (th	RCD):			10,500 ns		9,99	90 ns			
				Rov	v Prechar	ge Dela	y Time (tl	RP):			10,500 ns		9,9	90 ns			
				Acti	ive to Pred	charge (Delay Tim	ie (tRAS	5):		21,000 ns		21,6	525 ns			
				Acti	ive to Acti	ve/Refr	esh Delay	Time (tRC):		47,000 ns		47,)00 ns			
				Fou	ır Activate	Window	w Delay T	'ime (tF	AW):		21,000 ns		19,8	375 ns			
				Sho	ort Activate	e to Act	ivate Dela	ay Time	(tRRD_S	5): 4	4,500 ns		3,88	35 ns			
				Lon	g Activate	to Acti	vate Dela	y Time ((tRRD_L): :	5,000 ns		4,99	95 ns			
				Nor	mal Refre	sh Reco	overy Dela	ay Time	(tRFC1)):	350,000 n	S	350	,000 n:			
				2X I	mode Refr	resh Re	covery De	lay I im	e (tRFC)	2): 1 4):	260,000 n	s	260	,000 n:	5		
				4X I	noue ken	esn ke	covery De	ay i m		4): .	100,000 1	s Show	delavs	in cloc	s k cycles		
														in cioc			Ň
Par	t Number		🔍 Sea	nrch 🔲 🕻)pen when	found											
0	00h-055h 100h-11	FFh Scr	reenshot														
SMBu	s 0 EEPROM 52h SMBC 790B	1:1002 SMBCloc	k 95 kHz														//

RYZEN TIMING CHECKER

Mit diesem Programm ist es möglich, die einzelnen Widerstände Haupt- und Subtimings auszulesen.

Ryzen Ti	ming Checker 1.05			-	- 🗆 X
3 467	MEMCLK Ratio	1DPC-SR	DIMM Config	1,0125	VDDCR_SoC (V)
Enabled	GearDownMode	1T	Cmd2T	Disabled	BankGroupSwap
Enabled	BankGroupSwapAlt	48.0Ω	ProcODT	0/0	AddrCmdSetup
0/0	CsOdtSetup	0/0	CkeSetup	34.3Ω	RttNom
Disabled	RttWr	48.0Ω	RttPark	20.0Ω	CLKDrvStr
20.0Ω	AddrCmdDrvStr	20.0Ω	CsOdtDrvStr	20.0Ω	CKEDrvStr

In der oberen Hälfte sieht man die Taktrate – VsoC – GDM & BGS sowie die einzelnen Widerstände.

Im weiteren Verlauf der Anleitung sieht man, dass vor allem ProcODT und die Rtt Werte starken Einfluss auf die Stabilität haben. Die Werte, welche alle auf 20 stehen sind die sogenannten CAD Werte)

14 t	CL	278	tRFC	0	tRDRDSCDLR
14 t	RCDWR	160,385	tRFC (ns)	Ban 2	tWRWRBAN
15 t	RCDRD	14	tCWL	0	tWRWRSCDLR
14 t	RP	8	tRTP	0	tWRRDSCDLR
28 t	RAS	7	tRDWR	13495	tREF
42 t	RC	3	tWRRD	7 786	tREF (µs)
4 t	RRDS	1	tWRWRSC	26	tMOD
6 t	RRDL	7	tWRWRSD	26	tMODPDA
24 t	FAW	7	tWRWRDD	8	tMRD
0 t	FAWDLR	1	tRDRDSC	18	tMRDPDA
0 t	FAWSLR	5	tRDRDSD	9	tSTAG
4 t	WTRS	5	tRDRDDD	2	tPHYWRD
12 t	WTRL	1	tCKE	9	tPHYWRL
12 t	WR	0	tRPPB	26	tPHYRDL
0 t	RCPage	0	tRCPB	9	tRDDATA
3 t	RDRDSCL	0	tRRDDLR	Disabled	tSTAGLR
3 t	WRWRSCL	Ban 2	tRDRDBAN	24	tWRMPR

Hier sieht man die verschiedenen Timings, welche in primäre, sekundäre und tertiäre Timings eingeteilt werden – hier im RTC sehr schön in drei Spalten aufgeteilt.

Näheres zu den Timings/Widerständen findest du hier: Let's Talk DRAM!

RYZEN DRAM CALCULATOR

Der Ryzen DRAM Calculator ist perfekt für Anfänger geeignet, welche sich mit der ganzen Materie noch zu wenig auseinandergesetzt haben. Umso länger man sich mit RAM OC beschäftigt, umso geringer wird der Calculator verwendet. Ihr werdet es noch verstehen, wenn ihr einer von uns seid (3)

Wie lade ich nun mein RAM Kit Profil in den Calculator?

Klickt dort auf "Import XMP" und ladet den eben gespeicherten Report in den Calculator.

Stellt noch den "Processor" richtig ein. Achtet darauf, ob auch "Memory Type" korrekt übernommen wurde, wenn nicht, habt ihr ja in Thaiphoon Burner euren IC bereits ausgelesen (Achtung, bei zb. Hynix CJR ICs sollte auch die "Profile Version" auf "V1" gestellt werden). Nun noch die "Frequency" (Hier stellt eure gewünschte Taktrate ein) in meinem Beispiel 3466 einstellen und anschließend klickt man auf "Calculate SAFE oder FAST".

Hinweis: "Profile Version" wird in 3 Stufen angegeben:

V1 steht für sehr "high end" Speicher

V2 für nicht gerade guten Speicher

Debug wird eigentlich für die Allgemeinheit verwendet

Bei Samsung B-Die und Hynix CJR kann ruhig das V1 Profil verwendet werden (Probiert es einfach aus, ob euer Speicher mit verschärften Haupttimings zurechtkommt)

Genaueres besprechen wir in der Anleitung selbst.

AIDA64

Aida64 eignet sich perfekt um die Stabilität der RAM OC Profile zu testen. Was Aida64 aber ganz besonders macht ist, dass man damit perfekt die Spannung von VDIMM/VSoC/VCORE ausloten kann. (Auch mit der Gratisversion möglich – keinerlei Beschränkungen bez. Stabilitätstest.)

Mit Stress FPU/cache/system memory sollte Aida für mind. 60min überstehen!

ACHTUNG: Inkl. FPU wird eine sehr extreme "Hitze" erzeugt – Sollte nur der Boxed Kühler verbaut sein, oder es auch keinen guten Airflow im Gehäuse geben, empfehle ich euch **nur mit "cache" und "system memory" zu testen.** Auch damit ist es gut möglich, alles stabil zu bekommen.

Sollte nur "Stress cache" aktiviert sein, kann man perfekt die VSoC ausloten.

ACHTET AUF EINE AUSREICHENDE KÜHLUNG EURER KOMPONENTEN!

KARHU RAM TEST

Karhu ist für mich und auch bestimmt für viele andere RAM OCler da draußen, das non plus ultra, wenn es um Stabilitätstests für RAM OC Profile geht. Es kostet zwar ca. 10 Euro für eine lebenslange Lizenz, das Geld ist hier aber sehr gut angelegt. Immerhin dauert es eine lange Zeit, das RAM Profil auf Stabilität zu überprüfen. Karhu stellte sich als schnellste und effizienteste Programm für dieses Vorhaben heraus. (Ja, auch als Windowsprogramm unglaublich gut).

Für Single Rank Module (2x8GB) braucht das Programm ca. 2 – 3 Stunden.

Für Dual Rank Module (2x16GB) braucht das Prgoramm ca. 4 – 6 Stunden.

ACHTUNG: Inkl. FPU wird eine sehr extreme "Hitze" erzeugt – Sollte nur der Boxed Kühler verbaut sein, oder es auch keinen guten Airflow im Gehäuse geben, empfehle ich euch **nur mit "CPU cache" zu testen.** Auch damit ist es gut möglich, alles stabil zu bekommen.

ACHTET AUF EINE AUSREICHENDE KÜHLUNG EURER KOMPONENTEN!

TESTMEM5

TM5 dient als schneller Stabilitätstest. Die dazugehörige Config Datei nicht vergessen! (Siehe Downloadbereich)

🎹 TestMem5 v0.12		_		\times	
Processor		Memory			
AMD Ryzen 7 2700X Eight-Core	Total	al 16335Mb			
CPU ID AMD (17 · 8 · 2) x16	Availa	ble	534Mb)	
Clock * 3700 MHz Used 16	Pagef	File	19016	1b	
SSE 29.4 sec/Gb	Used	by test	864Mb x	(16	
Tests 0 1 3 4 5 6 7 8 9 10 11 12 1 Tests: 6, 12, 2, 10 "Simple Memory Test", 477, 8Mb	3 14	Time Cycle Error(s)	Status 1m 42 1 5	s	
Customize: Default @1usmus_v2 Start testing at 23:05, 864Mb x16 Îøèáêà à òåñòå 0 ÷åðåç . Îøèáêà à òåñòå 2 ÷åðåç . Îøèáêà à òåñòå 1 ÷åðåç . Îøèáêà à òåñòå 1 ÷åðåç .		Load o	mem.tz.ru Home Mail config & e Exit	xit	

Für Single Rank Module (2x8GB) braucht das Programm ca. 20min -30min.

Für Dual Rank Module (2x16GB) braucht das Programm ca. 40min – 60 min.

DAS PROGRAMM ERSETZT KEINEN VOLLSTÄNDIGEN TEST MIT KARHU!

LET'S TALK DRAM

Hier verlinke ich auf eine sehr gute Übersicht der einzelnen Widerstände sowie Timings.

Parameter	Function	Values
Memory clocks	Added dividers for memory clocks up to DDR4-4000 without refclk adjustment. Please note that values greater than DDR4- 2667 is overclocking . Your mileage may vary (as noted by our big overclocking warning at the end of this blog).	133.33MT/s intervals (2667, 2933, 3067, 3200, 3333, 3466, 3600, 3733, 3866, 4000)
Command rate (CR)	The amount of time, in cycles, between when a DRAM chip is selected and a command is executed. 2T CR can be very beneficial for stability with high memory clocks, or for 4-DIMM configurations.	2T, 1T
ProcODT (CPU on-die termination)	A resistance value, in ohms, that determines how a completed memory signal is terminated. Higher values can help stabilize higher data rates. Values in the range of 60-96 can prove helpful.	Integer values (ohms)
tWCL/tWL/tCWL	CAS Write Latency, or the amount of time it takes to write to the open memory bank. WCL is generally configured equal to CAS or CAS-1. This can be a significant timing for stability, and lower values often prove better.	Integer values (cycles)
tRC	Row cycle time, or the number of clock cycles required for a memory row to complete a full operational cycle. Lower values can <u>notably improve performance</u> , but should not be set lower than tRP+tRAS for stability reasons.	Integer values (cycles)
tFAW	Four activation window, or the time that must elapse before new memory banks can be activated after four ACTIVATE commands have been issued. Configured to a minumum 4x tRRD_S, but values >8x tRRD_S are often used for stability.	Integer values (ns)
tWR	Write recovery time, or the time that must elapse between a valid write operation and the precharging of another bank. Higher values are often beneficial for stability, and values < 8 can quickly corrupt data stored in RAM.	Integer values (ns)
CLDO_VDDP	Voltage for the DDR4 PHY on the SoC. Somewhat counterintuitively, lowering	Integer values (V)

Parameter	Function	Values
	VDDP can often be more beneficial for stability than raising CLDO_VDDP. Advanced overclockers should also know that altering CLDO_VDDP can move or resolve memory holes. Small changes to VDDP can have a big effect, and VDDP cannot not be set to a value greater than VDIMM-0.1V (not to exceed 1.05V). A cold reboot is required if you alter this voltage.	
	Sidenote: pre-1.0.0.6 BIOSes may also have an entry labeled "VDDP" that alters the external voltage level sent to the CPU VDDP pins. This is not the same parameter as CLDO_VDDP in AGESA 1.0.0.6.	
tRDWR / tWRRD	Read-to-write and write-to-read latency, or the time that must elapse between issuing sequential read/write or write/read commands.	Integer values (cycles)
tRDRD / tWRWR	Read-to-read and write-to-write latency, or the time between sequential read or write requests (e.g. DIMM-to-DIMM, or across ranks). Lower values can significantly improve DRAM throughput, but high memory clocks often demand relaxed timings.	Integer values (cycles)
Geardown Mode	Allows the DRAM device to run off its internally-generated ½ rate clock for latching on the command or address buses. ON is the default for speeds greater than DDR4-2667, however the benefit of ON vs. OFF will vary from memory kit to memory kit. Enabling Geardown Mode will override your current command rate.	On/Off
Rtt	Controls the performance of DRAM internal termination resistors during nominal, write, and park states.	Nom(inal), WR(ite), and Park integers (ohms)
tMAW	Maximum activation window, or the maximum number of times a DRAM row can be activated before adjacent memory rows must be refreshed to preserve data.	Integer values (cycles)
tMAC	Maximum activate count, or the number of times a row is activated by the system	Integer values (cycles)

Parameter	Function	Values
	before adjacent row refresh. Must be equal to or less than tMAW.	
tRFC	Refresh cycle time, or the time it takes for the memory to read and re-write information to the same DRAM cell for the purposes of preserving information. This is typically a timing automatically derived from other values.	Integer values (cycles)
tRFC2	Refresh cycle time for double frequency (2x) mode. This is typically a timing automatically derived from other values.	Integer values (cycles)
tRFC4	Refresh cycle time for quad frequency (4x) mode. This is typically a timing automatically derived from other values.	Integer values (cycles)
tRRD_S	Activate to activate delay (short), or the number of clock cycles between activate commands in a different bank group.	Integer values (cycles)
tRRD_L	Activate to activate delay (long), or the number of clock cycles between activate commands in the same bank group.	Integer values (cycles)
tWR	Write recovery time, or the time that must elapse between a valid write operation and the precharging of another bank. Higher values are often better for stability.	Integer values (ns)
tWTR_S	Write to read delay (short), or the time between a write transaction and read command on a different bank group.	Integer values (cycles)
tWTR_L	Write to read delay (long), or the time between a write transaction and read command on the same bank group.	Integer values (cycles)
tRTP	Read to precharge time, or the number of clock cycles between a READ command to a row and a precharge command to the same rank.	Integer values (cycles)
DRAM Power Down	Can modestly save system power, at the expense of higher DRAM latency, by putting DRAM into a quiescent state after a period of inactivity.	On/Off

Quelle: <u>https://community.amd.com/community/gaming/blog/2017/05/25/community-update-4-lets-talk-dram</u>

RAM OC ANLEITUNG - ANFÄNGER

Bei dieser Anleitung zeige ich euch anhand eines Beispiels, wie **mein Vorgehen für RAM OC** ist. Ich selbst lerne immer wieder was Neues dazu und würde mein Vorgehen **nicht als non plus ultra** beschreiben, aber es wird da draußen sicherlich ein paar Leuten helfen können.

Nun zum Beispiel – es wird hier mit meinen <u>Samsung B-Die</u> Kit versucht, 3466CL14 FAST Settings stabil zu bekommen.

Hardware:

CPU: 2700x inkl. Precision Boost Overdrive - LLC Mode 3 Kühler: Scythe Mugen 5 RAM: Hyper X Predator 4000 MHz CL19 2x8GB SR Mainboard: MSI X470 GPC mit AGESA 1.0.0.6

Wie im Sektor Thaiphoon Burner beschrieben, ladet den vollständigen HTML Report in den DRAM Calculator.

DRAM Calc	ulator for Ryz	en™ 1.4.0 by 1usm	US Fast preset	Kingston 3466 KHX4000C19D4/8GX K44	_ □ A8G085WB-BCRC
Main Advanc	ed Power Supply	System Additional calcul	ators Help About		
Processor R	yzen + gen 🔻 🔻	tCL 14	tRFC 277.3	Voltage Block (voltage range) Min.	Rec. Max
Memory Type	Samsung B-die 🔻	tRCDWR 14	tRFC 2 206	DRAM Voltage 1.4	1.41 1.43
Profile version	V1 -		+PEC 4 126.8	SOC Voltage	1.000 1.03125
Memory Rank	1 💌	14	UNIC 4 332.7	Misc items	
Frequency (MT/s)	3466 🔻			Power Down mode Disabl	ed BGS Disabled
BCLK (100-104.8)	100	tRAS 20	tRFC 2 (alt)	Gear Down mode Disabi	ed bGS alt Enabled
DIMM Modules	2 💌	tRC 42	tRFC 4 (alt) 152.1		
Task system	Synthetics▼	tRRDS 4	tCWL 14	Termination Block Ω Rec.	Alt. 1 Alt. 2
	Profile Current	tRRDL 6	tRTP 8	procODT 53	53 60
tCL (CAS) ns	9,500 8.078	tFAW 24	tRDWR 7	RTT_NOM* RZQ/7(34)	RZQ/7(34) RZQ/7(34)
tRCDWR ns	10,500 8.078	tFAWDLR 0	tWRRD 3	RTT_WR OFF	OFF OFF
tRCDRD ns	10,500 8.656	tFAWSLR 0	tWRWR SC 1	RTT_PARK RZQ/4(60)	RZQ/3(80) RZQ/4(60)
tRP ns	10,500 8.078	tWTRS 4	tWRWR SD 7	RZQ = 240 ohm, for exa	ample RZQ/3 = 240/3 = 80 etc.
tRAS ns	21,000 16.157	+W/TPI 12			bied of R2Q/7 (34 onin)
tRC ns	47,000 24.235			CAD_D03 block 32	Rec. Alt. 1 Alt. 2
tRFC ns	350,000 159.838	tvvk 12		CAD_BUS ClkDrv	20 24 30
tRRDS ns	4,500 2.308	tRCPage 0	trurd SD 5	CAD_BUS AddrCmdDrv	20 24 30
tRRDL ns	5,000 3.462	tRDRD SCL 3	tRDRD DD 5	CAD_BUS CsOdtDrv	20 24 40
tFAW ns	21,000 13.849	tWRWR SCL 3	tCKE 1	CAD_BUS CkeDrv	20 24 60
Screenshot	Reset	D 1/1/D			
Import XMP	Save settings	R - XMP	Calculate SAFE	Calculate FAST	Calculate EXTREME

Was bedeutet SAFE bzw. FAST?

Hier unterscheiden sich hauptsächlich die sekundären und tertiären Timings (Subtimings) - Teilweise aber auch die Haupttimings. Bei FAST werden zusätzlich die Subtimings mehr angezogen und geschärft, damit wird auch die Latenz verringert und die Durchsätze erhöht (Schreib/Lese/Kopier).

Wie gehen wir nun weiter vor?

Vorerst setzen wir nur mal die "Haupttimings" und sehen, ob wir einen erfolgreichen Boot haben. Wir stellen ins BIOS nur mal die ersten 5 Timings ein – die restlichen Timings lassen wir an dieser Stelle unberührt. Ich

möchte euch hier einen langsamen Weg in die Thematik bieten. Jedoch ist bereits jetzt die rechte Seite des Calculators sehr wichtig– Der erste Bereich behandelt die Spannung auf den RAM sowie die VSoC.

Der zweite Block "Termination Block" und der dritte Block "CAD BUS Block" geben verschiedene Widerstände an – diesen Widerstände werden wir uns gleich am Anfang widmen, immerhin sind diese, neben der korrekten Spannung, wichtig für einen erfolgreichen Boot eures gewünschten RAM OC Profils.

Hier kann man es mit zwei Vorgehensweisen versuchen - entweder von unten nach oben tasten bzw. umgekehrt. In meinem Beispiel setzen wir die Werte unten an und testen durch.

Nun widmen wir uns der rechten Spalte im Calculator: **DRAM Voltage** wird hier 1,40V - 1,43V angegeben - gut, dann fangen wir mal mit 1,40V an. **SoC Voltage** wird mit 1,00V und 1,03125V angegeben - versucht hier mal 1,00V - oder auch drunter

PowerDownMode It. Calculator auf Disabled- wir lassen es deaktiviert (gut für die Latenz)
GearDownMode stellen wir auf alle Fälle auf Enabled (trägt sehr gut zur Stabilität bei - man verliert aber bei der Latenz ein wenig)
BankGroupSwap wird deaktiviert (Kann mit neuem Agesa nicht mehr umgestellt werden)
Bei Dual Rank Module (2x16GB) empfiehlt es sich BGS aktiviert zu lassen.

Jetzt kommen wir zu zwei sehr wichtigen Blöcken - Termination & CAD Block

Wir versuchen mal folgende Werte ins BIOS einzuspielen: ProcODT auf 43 Ohm RttNom auf 34,3 Ohm RttWr OFF RttPark 48 Ohm CAD alle mal auf 20 Ohm

RZQ/1 = 240 Ohm RZQ/2 = 120 Ohm RZQ/3 = 80 Ohm RZQ/4 = 60 Ohm RZQ/5 = 48 Ohm RZQ/6 = 40 Ohm RZQ/7 = 34 Ohm

Bevor man alle Werte ins BIOS einspielt und anschließend speichert, empfehle ich euch unbedingt eine Tabelle für eure Versuche zu führen. Danke an <u>@stinger2k</u> für die tolle Excel Tabelle - Auch perfekt dazu geeignet um seine CAD Werte ausloten zu können.

RAM Analyse Final Release TABELLE

Das mach ich jetzt auch für euch und wir sehen uns gemeinsam das Verhalten zu meinem RAM/CPU/MB an. Werde euch hier die oben genannten Werte auch genauer erklären und zeigen, wo man ansetzen kann, um Fehler bei AIDA/Karhu/TM5 auszumerzen.

Los gehts!

Hier nochmal die eingestellten Werte in der Excel Tabelle:

Basis							
Frequency	3466						
Dimm Modules	2						
DRAM V	1,4						
SOC V	0,9750						
Dual/Single Rank	SR						
GDM	on						
PDM	off						
Command rate	11						
BGS	off						
BGS (alt)	on						
procODT	43						
RttNom	34						
RttWr	0						
RttPark	48						
CAD CIkDrv	20						
CAD AddrCmdDrv	20						
CAD CsOdtDrv	20						
CAD CkeDrv	20						
+C1	44						
tDCDWD	14						
+DCDDD	14						
+DD	15						
+DAC	14						
IKAS	20						

Nachdem wir die Werte ins BIOS übernommen haben, speichern wir noch die Werte in das OC Profil, übernehmen alles mit F10 und starten die Kiste mal neu.

Und siehe da, die Kiste startet ein paar Mal neu und *setzt den RAM auf das Standardprofil zurück* - hier haben wir also das erste **"Limit"**, welches wir umschiffen müssen.

Hier kann man an zwei Schrauben drehen, nämlich ProcODT und VSoC.

Alles andere lassen wir mal unberührt und setzen ProcODT eine Stufe höher auf 48 Ohm. Hier kann es auch RAM Kits geben, welche von Haus aus eine höhere ProcODT Stufe bevorzugen - 60 bzw. 68 Ohm.

Sobald ihr am Desktop angekommen seid, überprüft mit Ryzen Timing Checker eure (Sub)Timings sowie Widertsände und gleicht diese mit der Excel Tabelle ab.

Jetzt werden sich wahrscheinlich ein paar Leute fragen, warum zum Teufel fangen wir so tief an und übernehmen nicht einfach die Werte vom Calculator mit 53 Ohm?

Ich möchte euch mit meinem Beispiel hier auch gleich die limitierenden Faktoren aufzeigen - @Reous hat dazu einen wundervollen <u>Sammelthread auf Hardwareluxx</u> erstellt und behandelt genau das Thema, somit könnt ihr in Zukunft auch leichter verstehen, was euch gerade im Weg steht und euer RAM OC Profil nicht stabil zu bekommen ist - Klar, ein wenig aufwendiger, aber wenn man sich schon mit RAM OC auseinandersetzt, machen die paar Minuten mehr Aufwand das Kraut auch nicht fett ^{CO} Zitat Reous:

"Die ProcODT hat einen erheblichen Einfluss auf die Stabilität und auf den möglichen stabilen Takt. Bei den getesteten AM4 Mainboards und Arbeitsspeicher konnte ich immer eine Gemeinsamkeit feststellen. Wenn man einen gewissen ProcODT Wert überschreitet bzw. nicht mehr booten kann, wird der RAM instabil oder ist nur mit sehr viel Mühe stabil zu bekommen. Der RAM IC Hersteller spielt hierbei keine Rolle. Für mich stellt sich dies dar, wie eine weitere Art der IMC Limitierung.

Der ProcODT Wert selbst wird von zwei Faktoren bestimmt, dem RAM selbst und dem verwendeten Mainboard. - Mehrere RAM Kits gleicher Serie, können unterschiedliche ProcODT Werte bevorzugen.

- Je qualitativ hochwertiger das Mainboard, desto ein geringerer ProcODT Wert ist einstellbar."

Wir haben nun ProcODT auf 48 Ohm geändert und wir schauen mal, ob die Kiste nun booten will - **und siehe da, es funktioniert**. Werden euch gleich mal Bluescreens präsentiert? Hier kann es helfen, die Spannung am RAM um 0,01V und/oder auch die ProcODT um noch eine Stufe zu erhöhen!

HILFE, ein Boot ist bei mir noch immer nicht möglich!?

(Sollte hier kein Boot möglich sein, obwohl die Spannung korrekt vergeben wurden, machen wir mal kurz einen Abstecher zu ProcODT/Rtt/CAD Werte und loten diese mal aus, damit auch ein Boot möglich ist)

Jetzt müssen wir natürlich noch die Stabilität testen, aber womit fängt man an?

Lotet als erstes Mal die RAM/VSoC/VCORE Spannung mit AIDA64 aus - dazu stellt folgendes ein (auch mit Free Version möglich). Lasst dazu <u>AIDA64</u> mal für ca. 30min laufen.

Zuerst testen wir mit den im Aida Part erwähnten 3 Einstellungen (FPU/cache/system memory).

Sollte Aida schnell einen Fehler auswerfen, liegt es sehr wahrscheinlich an der zu geringen Spannung am RAM. Wir machen hier noch kurz einen Gegentest mit Karhu und TM5.

Der Gegentest mit Karhu/TM5 bestärkt meine Vorahnung, schnelle und mehrere Fehler bei Karhu können auf VDIMM/VSOC/ProcODT hinweisen.

System Stability Test - AIDA64	ţ		-	
Stress CPU	Date & Time	Status		
% 🗹 Stress FPU	10.12.2018 22:52:06	Stability Test: Started		
Stress cache	10.12.2018 22:59:08	Warning: Hardware failure detected! Test stopped		
Stress system memory	10.12.2018 22:59:08	Stability Test: Failed		
Stress local disks				
🕞 🗌 Stress GPU(s)				

Viele Fehler sind eigentlich immer schön zu sehen, da man da leichter agieren kann, im Gegensatz zu einem späten Fehler bei Karhu (In Part II gibt es mehr dazu). Bei Karhu sollten ca. 2,0 - 2,5GB für euer System frei bleiben.

esting Advanced	About					
System status		🌉 TestM	lem5 v0.12			
Total memory: Free memory:	16334 MB 2526 MB	AMD R	Processor yzen 7 2700X Eight-Core	Tota	Men I lable	16335Mb 534Mb
Test settings		Clock *	3700 MHz Used 16	Page	PageFile 190:	
Megabytes:	11500 🜲	SSE	29.4 sec/Gb	by test	864Mb x16	
Threads:	16 🌲		Tests	Status		
 Beep on error 		0 1 2	3 4 5 6 7 8 9 10 11 1	21314	Time	1m 42s
Stop on error		Tests: 6,12,2,10			Cyde	1
Test status		"Simple	Memory Test", 477, 8Mb		Error(s)	5
Duration:	0:00:01:11				test	tmem tz ru
Coverage	77 %	Customiz	e: Default @1usmus_v2			
Error count:	2	Îøèáêà â	òåñòå 0 ÷åðåç.			Home
		Îøèáêà â	òâñòâ 2 ÷âðâç.			Mail
Stor	_	Îøèáêà â	òảñòả 1 ÷ảðåç.		Load	config & exit
Stop	,	Îøèáêà â	òâñòå 0 ÷åðåç.		Exit	

Alle drei Tests bestätigen uns, dass es Fehler bei der Spannung gibt. Nun, wir machen hier zusätzlich noch einen Test mit Aida64 und aktivieren hier nur "cache" – dieser Test zeigt uns, ob VSoC zu gering eingestellt ist. Sprich, wir können dann im BIOS/Command Center/TurboVCore (ASUS)/usw... die VDIMM (DRAM VOLTAGE) sowie die VSoC gleich ein wenig erhöhen (geht hier in kleinen Schritten nach oben, bis Aida64 stabil läuft).

Wir erhöhen die VDIMM mal um 0,01V auf 1,41V und testen wieder von vorne. **Bei meinem Kit musste ich mit der VDimm auf 1,43V hochgehen - auch die VSoC wurde auf 1,00V erhöht.**

So Aida64 läuft nun ohne Probleme - Nun wird noch mit TM5 und Karhu getestet. Sollten hier Fehler auftauchen, gehen wir wie folgt vor: **ProcODT, CAD dann Rtt Werte anpassen.** Los gehts mit den Stabilitätstests von Karhu und TM5.

Ryzen T	iming Checker 1.05			-	- 🗆 X					
3 467	MEMCLK Ratio	1DPC-SR	DIMM Config	1,0000	VDDCR_SoC (V)	TestMem5 v0.12	– 🗆 X			
Enabled	GearDownMode	1T	Cmd2T	Disabled	BankGroupSwap	Processor Memory				
Enabled	BankGroupSwapAlt	48.0Ω	ProcODT	0/0	AddrCmdSetup	AMD Ryzen 7 2700X Eight-Core T CPU ID AMD (17 · 8 · 2) x16 A	vailable 16335Mb			
0/0	CsOdtSetup	0/0	CkeSetup	34.3Ω	RttNom	Clock * 3700 MHz Used 16	ageFile 4025Mb			
Disabled	RttWr	48.0Ω	RttPark	20.0Ω	CLKDrvStr	SSE 0 mS/GD Used by test				
20.0Ω	AddrCmdDrvStr	20.0Ω	CsOdtDrvStr	20.0Ω	CKEDrvStr	Tests Status				
						0 1 2 3 4 5 6 7 8 9 1011121314 Time 22m 10.5.1.4.3.0.13.9.7.8.1.11.14 Cvde				
14	tCL	278	tRFC	0	tRDRDSCDLR	Error(s)				
14	tRCDWR	160,385	tRFC (ns)	Ban 2	tWRWRBAN					
15	tRCDRD	14	tCWL	0	tWRWRSCDLR	Customize: Default @1usmus_v2 Start testing at 23:39, 880Mb x16				
14	tRP	8	tRTP	0	tWRRDSCDLR	Testing completed in 22m 15s, Ma				
28	tRAS	7	tRDWR	13495	tREF	Load config 8				
42	tRC	3	tWRRD	7 786	tREF (µs)	Exit				
4	tRRDS	1	tWRWRSC	26	tMOD	💭 ydimm tyt - Editor	— П X			
6	+RRDI	7	tWRWRSD	26	+MODPDA	Datei Bearbeiten Format Ansicht	Hilfe			
0		7		20		VDIMM 1,43V	^			
24	tFAW	1	tWRWRDD	8	tMRD	TestMem5 v0.12	×			
0	tFAWDLR	1	tRDRDSC	18	tMRDPDA					
0	tFAWSLR	5	tRDRDSD	9	tSTAG	The testing is completed, of e	rrors is not detected.			
4	tWTRS	5	tRDRDDD	2	tPHYWRD					
12	tWTRL	1	tCKE	9	tPHYWRL		ОК			
12	tWR	0	tRPPB	26	tPHYRDL					
0	tRCPage	0	tRCPB	9	tRDDATA		~			
3	tRDRDSCL	0	tRRDDLR	Disabled	tSTAGLR					
3	tWRWRSCL	Ban 2	tRDRDBAN	24	tWRMPR					

Wie in <u>TestMem5</u> Teil erwähnt, dient das Programm als Schnelltest – solltet ihr mit euren Haupttimings bis hier her gekommen sein, könnt ihr auch mal **die Subtimings ins BIOS einspielen und einen weiteren Lauf mit Aida64 und TM5 machen** (Orientiert euch bei den Subtimings mal an die "SAFE" Settings des <u>DRAM</u> <u>Calculators</u>)

Wie lange sollte man mit Karhu testen?

Hier empfiehlt es sich, den ersten Lauf bis 10.000% zu machen - danach schaltet euren PC für ein paar Minuten aus, startet neu und lässt einen weiteren Lauf in Karhu bis mind. 5000% laufen.

Ryzen T	iming Checker 1.05			-	- 🗆 ×	°₀ RAM Test — □ ×
3 467	MEMCLK Ratio	1DPC-SR	DIMM Config	1,0000	VDDCR_SoC (V)	Testing Advanced About
Enabled	GearDownMode	1T	Cmd2T	Disabled	BankGroupSwap	Total memory: 16334 MB
Enabled	BankGroupSwapAlt	48.0Ω	ProcODT	0/0	AddrCmdSetup	Free memory: 3282 MB
0/0	CsOdtSetup	0/0	CkeSetup	34.3Ω	RttNom	Test settings
Disabled	P++Wr	48.00	PttPark	20.00	CLKDruStr	Megabytes: 11500
Disabica		40.012	NU BIK	20.012	CERDIVSU	Threads: 16 🔹
20.0Ω	AddrCmdDrvStr	20.0Ω	CsOdtDrvStr	20.0Ω	CKEDrvStr	Beep on error
						Stop on error
14	tCL	278	tRFC	0	tRDRDSCDLR	Test status
14	tRCDWR	160,385	tRFC (ns)	Ban 2	tWRWRBAN	Duration: 0:06:13:19
15	tRCDRD	14	tCWL	0	tWRWRSCDLR	Coverage 25721 %
14	tRP	8	tRTP	0	tWRRDSCDLR	Error count: 0
						Chan.
28	tRAS	7	tRDWR	13495	tREF	Stop
42	tRC	3	tWRRD	7 786	tREF (µs)	
4	tRRDS	1	tWRWRSC	26	tMOD	Volumm.t — L X
6	tRRDL	7	tWRWRSD	26	tMODPDA	Hilfe
24	15014	7		0	44400	VDIMM 1,43V
24	TAW			0	UNICO	
0	tFAWDLR	1	tRDRDSC	18	tMRDPDA	
0	tFAWSLR	5	tRDRDSD	9	tSTAG	
4	tWTRS	5	tRDRDDD	2	tPHYWRD	
12	tWTRL	1	tCKE	9	tPHYWRL	
12	tWB	0	TRPPR	26	TPHYRDI	
	1					· · · · · · · · · · · · · · · · · · ·
0	tRCPage	0	tRCPB	9	tRDDATA	
3	tRDRDSCL	0	tRRDDLR	Disabled	tSTAGLR	
3	tWRWRSCL	Ban 2	tRDRDBAN	24	tWRMPR	Carl States (1995)

Fehleranalyse bei Karhu

PROCODT/RTT/CAD – STABILITÄT FÜR BOOT/KARHU/TM5

ProcODT und Rtt sind für die Stabilität und auch für einen erfolgreichen Bootvorgang sehr wichtig. Solltet ihr hier Probleme haben überhaupt einen erfolgreichen Boot zu sehen bzw. auch später bei Karhu einen Fehler präsentiert bekommt, kann es euch hier helfen ein paar verschiedene Settings zu probieren und diese auch zu dokumentieren – Ja… Verdammt… Schreibt so gut wie alles mit… Glaubt mir, ihr werdet das brauchen.

Bei Single Rank/Dual Rank Module:

FICCODI 48 55 00 08

Wählt den geringsten Wert aus, welcher zu einem erfolgreichen Boot führt!

Umso höher die Taktstufe, umso mehr kann eine höhere ProcODT euch helfen, das Setting stabil zu bekommen. Es gibt auch RAM Kits, welches eine von Haus aus höhere ProcODT bevorzugen.

SINGLE RANK	Test 1	Test 2	Test 5	Test 6	Test 9	Test 10	Test 3	Test 4	Test 7	Test 8	Test 10	Test 11
procODT	48	48	53	53	60	60	48	48	53	53	60	60
RttNom	34	34	34	34	34	34	0	0	0	0	0	0
RttWr	0	0	0	0	0	0	0	0	0	0	0	0
RttPark	48	60	48	60	48	60	48	60	48	60	48	60
	Tort 1	Tort 2	Toet 5	Tort 6	Toct 9	Tost 10	Tort 3	Tort 4	Tect 7	Tect 8	Tost 10	Toct 11
DUAL RANK	Test I	Test 2	Testo	Testo	Testa	Test IV	Testo	Test4	Test /	Testo	Test IV	lestill
procODT	48	53	48	53	48	48	48	53	48	53	53	53
RttNom	34	34	0	0	40	48	34	34	0	0	40	48
RttWr	0	0	80	80	0	0	80	80	80	80	0	0
RttPark	0	0	240	240	0	0	240	240	240	240	0	0

Zusätzliche Ideen für ein paar Kombinationen aus ProcODT und Rtt Werten:

(HINWEIS: Bei Dual Rank kann es sein, dass die ProcODT bereits bei 60 bzw. 68 Ohm steht – was auch normal ist! Konzentriert euch bei meiner Liste mehr auf die Rtt Werte)

Das sind hier nur Anhaltspunkte, wie hoch die ProcODT bei euch genau sein muss, müsst ihr bitte selbst ausloten – wählt zumindest immer die geringste Stufe, welche euch einen Boot ermöglicht. In höheren Taktbereichen solltet ihr auch die ProcODT nach oben anpassen – für die Stabilität sehr wichtig.

Hier mal ein kurzes Beispiel, um euch die Materie näher zu bringen:

Karhu läuft mit folgenden Einstellungen 48/0/0/48 bis ca. 5000%. **Dann empfiehlt es sich hier als Gegentest** mal 48/0/0/60; 53/0/0/48; 60/0/0/48 zu nehmen. Hier kann mal relativ gut sehen, ob die Änderungen der einzelnen Widerstände zu einer Verbesserung oder eine Verschlechterung oder vlt. sogar zur kompletten Stabilität führt.

Auch die CAD Werte können in diesem Beispiel zum Erfolg führen – sollten die verschiedenen ProcODT Stufen keine Verbesserung hervorrufen, dann stell die CAD Werte mal alle auf 20-20-20; 24-24-24; 30-30-30-30; 30-30-40-60 und testet die oben genannten ProcODT/Rtt Stufen jeweils mit den verschiedenen CAD Werten nochmals durch. Auch solche Einstellungen können euch schlussendlich den Erfolg bringen.

Ist es noch immer nicht möglich, die Settings stabil zu bekommen, kannst du erstens mal <u>hier</u> schauen, ob du die Subtimings zu straff angezogen hast bzw. auch <u>hier</u> im Forum mal nachfragen.

FEHLERANALYSE KARHU

7% - 100%	Frühe und vermehrte Fehler liegen an DRAM Voltage/VSoC/ProcODT. Hast du mit Aida die Spannungen ausgelotet?
100% - 3.500%	Vereinzelte Fehler in diesem Bereich deuten auf falsch gesetzte ProcODT und Rtt Werte hin. Siehe Punkt " Wie lote ich ProcODT und Rtt richtig aus? "
	Auch Gegentest mit verschiedenen CAD Werten können helfen – wenn ihr zb. Alle auf 20 stehen habt, stellt einfach mal alle auf 24 um und schaut euch das Ergebnis an. Wenn besser, weiterhin verfolgen, wenn nicht, zurück zu Rtt Werten!
	Auch zu straffe Subtimings können hier Fehler ausgeben!
3.500% - 5.000%	Hier könnte man vorerst noch mit einer höheren Stufe ProcODT bzw. mit höheren oder tieferen Rtt Werten gegentesten und darauf achten, welche Werte stabiler laufen.
	Auch Gegentest mit verschiedenen CAD Werten können helfen – wenn ihr zb. Alle auf 20 stehen habt, stellt einfach mal alle auf 24 um und schaut euch das Ergebnis an. Wenn besser, weiterhin verfolgen, wenn nicht, zurück zu Rtt Werten!
	Auch zu straffe Subtimings können hier Fehler ausgeben!
5.000% - 10.000%	Hier hilft es, verschiedene CAD Werte auszuprobieren – siehe " <u>Wie lote ich</u> die CAD Werte richtig aus"

WO KANN ICH MEINE SUBTIMINGS NOCH VERBESSERN? ODER SIND MEINE SUBTIMINGS ZU STRAFF?

Hier einmal ein Bild, wo man die Subtimings bei einem stabilen 3466CL14er Setting noch anziehen könnte (was ich auch gemacht habe) – ACHTUNG zu straffe Subtimings können auch zu Fehlern in Karhu führen, achtet daher darauf, dass ihr langsam die Subtimings anzieht und nicht zu viele zu gleich ändert, damit die Fehleranalyse leichter voran geht.

Ryzen T	iming Checker 1.05			-	- 🗆 X
3 467	MEMCLK Ratio	1DPC-SR	DIMM Config	1,0125	VDDCR_SoC (V)
Enabled	GearDownMode	1T	Cmd2T	Disabled	BankGroupSwap
Enabled	BankGroupSwapAlt	53.3Ω	ProcODT	0/0	AddrCmdSetup
0/0	CsOdtSetup	0/0	CkeSetup	34.3Ω	RttNom
Disabled	RttWr	60.0Ω	RttPark	24.0Ω	CLKDrvStr
24.0Ω	AddrCmdDrvStr	24.0Ω	CsOdtDrvStr	24.0Ω	CKEDrvStr
			256 oder 2	268	
14	tCL	277	tRFC	0	tRDRDSCDLR
14	tRCDWR	159,808	tRFC (ns)	Ban 2	tWRWRBAN
15	tRCDRD	14	tCWL	0	tWRWRSCDLR
14	tRP	8	tRTP	0	tWRRDSCDLR
28	tRAS	7	tRDWR	13495	tREF
42	tRC	3	twrrd 2	7 786	tREF (µs)
4	tRRDS	1	tWRWRSC	26	tMOD
6	tRRDL	7	twrwrsd 5	26	tMODPDA
24	tFAW 16	7	tWRWRDD	8	tMRD
0	tFAWDLR	1	tRDRDSC	18	tMRDPDA
0	tFAWSLR	5	tRDRDSD	9	tSTAG
4	tWTRS	5	tRDRDDD	2	tPHYWRD
12	tWTRL 9	1	tCKE	9	tPHYWRL
12	twr.	0	tRPPB	26	tPHYRDL
0	tRCPage	0	tRCPB	9	tRDDATA
3	tRDRDSCL	0	tRRDDLR	Disabled	tSTAGLR
3	tWRWRSCL 2	Ban 2	tRDRDBAN	24	tWRMPR

Genau bei den markierten Werten können höhere Werte schnell zur Stabilität führen!

WIE WARM DARF MEIN RAM KIT WERDEN? WIE VIEL SPANNUNG (VDIMM) IST SINNVOLL?

Lt. DDR4 Spezifikationen von <u>Samsung</u> können die Speicherkits eine Temperatur von 85° Celsius (Normalbereich) wegstecken.

Für mehr Stabilität empfehle ich euch, die Temperaturen eher gering zu halte. Laut Erfahrungen vieler User ist es sinnvoll, nicht über 52°-55° Celsius zu gehen – teilweise ist auch die Rede von nur 48° Celsius. Sorgt für einen guten Airflow im Gehäuse. Interessant werden Temperaturen ja erst nach einer ausgiebigen Zockernacht, wenn die Grafikkarte ebenfalls das Gehäuse mit Abwärme versorgt.

Bis 1,50V VDIMM kann man den RAM Kits ohne Probleme zumuten. Ich selbst empfehle eine aktive Kühlung der Speichermodule ab >1,45V VDIMM. Hier verweise ich nochmals auf das <u>Vorwort</u> und übernimm keinerlei Haftung/Garantie für irgendwelche Schäden an euren Hardwarekomponenten.

Hinweis Es kann sein, dass teilweise zu hohe Spannungen zur Instabilität führen können – hängt wieder vom RAM Kit ab.

EIGNEN SICH AUCH SPIELE FÜR STABILITÄTSTESTS?

Kurz und knappes JA!

Es stellte sich heraus, dass vor allem Battelfield 5 und PUBG sich perfekt für dieses Szenario eignen. BF5 Online aufgrund der tollen Auslastung der Kerne, für die Grafikkarte ebenfalls eine gute Herausforderung darstellt und natürlich bei größeren Maps (64er) ordentlich den RAM in den Schwitzkasten nimmt – Achtet mal mit MSI Afterburner auf die Auslastung!

PUBG eignet sich ebenfalls perfekt dazu. Hier dürfte wohl mitspielen, dass PUBG immer noch mit vielen Bugs zu kämpfen hat. Wie auch immer, instabile RAM OC Settings werden damit relativ flott entlarvt.

Wie zeigt sich nun, dass mein RAM OC Profil instabil ist?

Meist landet man ohne jegliche Fehlermeldung einfach am Desktop!

Was hilft mir nun dabei, es stabil zu bekommen?

Achtet auf die Temperaturen eures RAM Kits – zu hohe Temperaturen, dass eine Instabilität hervorgerufen wird? Achtet auf eine ordentliche Belüftung.

Meist hilft es aber auch schon, einfach die VDIMM um 0,01V zu erhöhen – oder auch die VSoC um einen kleinen Schritt nach oben setzen. (Muss von euch selbst ausgelotet werden).

NÜTZLICHE LINKS

AMD Ryzen – Limitierende Faktoren beim RAM OC by Reous

AMD Ryzen – Systemoptimierung durch RAM OC by RYZ3N

Discord Kanal für AMD Ryzen RAM OC

DANKSAGUNG

Einen ganz großen Dank möchte ich hier an dieser Stelle an meine geschätzten Forenkollegen **@RYZ3N**, **@Ned** Flanders, **@Reous**, **@Flynn82**, **@nospherato**, **@Baal Netbeck**, **@Nero1**, **@ZeroCoolRiddler**, **@Stuxi**, **@Dragonheart69**, meinem Kärntner Kollegen <u>@stinger2k</u> und natürlich allen anderen, die fleißig mit geholfen haben, aussprechen.

Danke für eure Unterstützung, euren Enthusiasmus, euren Einsatz und eure Hilfsbereitschaft!